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Abstract-Freezing of foodstuffs frequently involves boundary conditions of the third kind, which have 
proved to be difficult to handle and subject to error, mainly because of the requirement to calculate 
surface temperatures implicitly. Experimental freezing studies on model and actual biological systems 
have been simulated by finite difference methods with a three time level scheme and boundary conditions 
of the third kind, for one dimensional heat transfer. For freezing times, from onset of cooling until the 
centre reaches - lo”C, experiment and prediction agreed to within f 14% with 99% confidence, including 

experimental error estimated at *4%. 

NOMENCLATURE 

volumetric specific heat capacity [J/m3 “Cl; 
slab half thickness [m]; 
surface heat-transfer coefficient [W/m2 “Cl; 
enthalpy [J/m31 ; 
thermal conductivity [W/m “Cl; 

C(Ax)’ 
dimensionless number, ~ ; 

kAt 

dimensionless number, F ; 
s 

number of space increments in the half slab; 
number of sheets of cardboard in 
equatiov (8); 
surface heat flux [W/m’]; 

k,Ax, 
dimensionless number, __. 

kcAxI, ’ 

thickness of one sheet of cardboard in 
equation (8) [m] ; 
temperature [“Cl ; 
time [s]: 
time step in finite difference scheme [s]; 
displacement from the surface of the slab [m] ; 
space increment in finite difference 
scheme [m]. 

Superscripts 

m, defines time level in finite difference scheme: 
indicates space increment as defined by 
equation (13). 

Subscripts 

a, ambient conditions; 

h, refers to one material in equation (7); 

c, refers to other material in equation (7); 

ca, property of the cardboard; 
talc, computation facilities required by the finite 

difference program; 

*Copies of the Fortran IV computer program used in this 
work can be obtained from the authors. 

cc, refers to cardboard thermal contact in 
equation (8); 

4 nodal points in half slab; 
in, initial conditions; 

P, refers to thermal resistance of plates in 
equation (8); 

pre, quantities predicted by the difference scheme; 

s, surface of the half slab. 

INTRODUCTION 

PHASE change in solid materials is a very important 
phenomenon in a variety of industries. It is important 
in alloy solidification,preservation of foodstuffs, preser- 
vation ofmedical and biochemical materials, in freezing 
of soils and in frost damage to plants. Because of the 
economic importance of such processes a wide range 
of research into the effects of phase change, and into 
physical models for it has been conducted. 

In spite of this extensive research a general analytical 
solution to the problem of a solid undergoing phase 
change has not been found. A variety of approaches 
to the problem have been tried, and these can be 
classified into two groups. The first group are the 
numerical finite difference and finite element solutions 
which rely on approximations to the governing partial 
differential equations over small time and space inter- 
vals. The second group comprise those methods where 
simplifying assumptions are made, leading to the 
solution of the partial differential equations to give 
either completely analytical and explicit formulae or 
ordinary integro-differential equations which can be 
evaluated numerically, to find the temperature distri- 
bution and phase change front position. 

This paper is concerned with the first of these 
approaches, and looks at one-dimensional heat transfer 
in finite slabs. Two techniques have been used to take 
account of phase change when using finite differences. 
The first of these uses a heat balance over each Ax to 
determine the position of the phase change front at 
which a step change in enthalpy occurs [l, 21. The 
second approach takes into account the fact that in 
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solidifying foods and alloy mixtures phase change 
occurs over a range of temperature, and can be repre- 
sented by a finite apparent heat capacity [3-51. Thus 
the problem becomes one of solving the governing 

partial differential equation 

C(T)F=k(T)$ 
I, 

(1) 

with changing thermal properties subject to the 

appropriate boundary condition, of which four types 

are recognised. 

First kind : 

Second kind : 

T, = T, for t > 0 (2) 

Q=-kg = 
c 1 

for t>O (3) 
X 0 

Third kind : 
^ 

h(T,-TJ= -k f$ = 
c J 

for t > 0 (4) 
X 0 

Fourth kind : 

T, = f(t) for t > 0. (5) 

The second kind of boundary condition, that of 
constant heat flux is of no practical importance [6], 
and the first kind of boundary condition can be treated 
as a special case of either the third kind where h is 

infinite, or of the fourth kind where f(t) = T,. The 
third kind of boundary condition as well as taking 

account of convection, can be used wherever there is 
a resistance to heat transfer between the surface of the 
body and the bulk external medium. The surface heat- 
transfer coefficient h, in these cases is a measure of the 

resistance to heat transfer from the surface of the body 
to the external medium. For example, in a plate freezer 
T. is the temperature of the refrigerant in the plates, 
and h represents the resistance to heat flow of the 
plates themselves, any packaging, and the resistance 
due to imperfect thermal contact between the plates 

and the product. 
Bonacina er al. [4] used a scheme suggested by Lees 

[7] to set up an implicit finite difference scheme which 
involves three time levels : 

- 2(Ax)’ 
-----k:++7;,“+:‘+ 

3At 

Z(Ax)’ 
-,-ky_+T?!:’ 

This scheme is unconditionally stable and con- 
vergent. Bonacina et al. [4] used it with the first and 
fourth kind of boundary condition. The first kind of 
boundary condition was checked against an analytical 
solution due to Neumann [8], and Bonacina et al. 
found agreement to be within 3% [9]. 

To check the applicability of the finite difference 

scheme to the fourth kind of boundary condition it is 
necessary to set up experimental freezing tests. For this 
Bonacina et al. [9] used as their freezing material 

“Karlsruhe test substance”, a defined 23”” methyl- 
cellulose gel (“Tylose”). This was formed into a slab 
which was frozen from both sides, with other edges 
insulated. They also froze several food materials [lo]. 
Both surface and centre temperatures were measured, 

and the experimental surface temperature profile was 
used in the finite difference program, and the calculated 
and experimental centre temperatures compared. 

In design situations it is rare to know a surface 

temperature/time profile. However often the bulk ex- 

ternal medium temperature (ambient temperature T,) 
is known, for example, air temperature in a blast 
freezer; and there are well known means of arriving 
at a surface heat-transfer coefficient h, which takes 
account of all resistances for heat leaving the surface 

of the freezing material and going into the cooling 
medium. This is the case of Newton’s law of cooling, 
the third kind of boundary condition. In such cases the 
surface requires special consideration. 

Bonacina et al. [ll] suggest that when i = 0, then 

7Y”r = T, and a pseudo-thermal conductivity is defined, 
k’!!“, = hAx, so that a three level scheme can be used. 
The authors found the “Lees” scheme to be superior 
to others such as the work of Dusinberre [12], due to 

smaller truncation errors, and to better representation 
of thermal properties. A scheme of comparable accu- 

racy to the “Lees” scheme is given by McAdams [13] 
for the interface between two dissimilar materials: the 
formula was applied at nodal points in the slab using 
thermal properties OSAx on either side of the nodal 
point. At the surface of the slab the boundary condition 
is equation (4) which can’be represented in the explicit 
finite difference scheme by the following equation: 

T,m+’ ZZ 
4N 

(MC + RM,) ‘+ i 

2 

+(M,+R&,) 
T;‘. (7) 

The authors found this scheme to be of similar accuracy 
to the two level version of the “Lees” scheme but less 
versatile because it is explicit. The three level “Lees” 

scheme is preferred because it has several major ad- 
vantages over a two level scheme [4]. 

Bonacina et al. [ll] did not determine the surface 
heat-transfer coefficient independently, but rather 
chose a value that gave best fit of predicted temperature 
profiles to their experimental freezing curves in each 
case. The present authors have developed methods for 
measuring h, and used these to determine surface heat- 
transfer coefficients independent of the freezing process 
[14]. With different numbers of sheets of cardboard, 
interposed between the slab and the external medium, 
cooling curves of Tylose samples were used to find h, 
and a regression line relating thermal resistance to 
number of cardboard sheets was found. From this line 
values of h can be obtained for use with the third kind 



Numerical freezing calculations 

of boundary condition. This boundary condition is 
especially important in freezer design, as in this case 
the surface temperature/time profile is unknown, but h 
and T. can be found. Thus an estimate of freezing time 
can be made without experimental investigation. 

The definition of freezing time used here is in accord-, 
ante with the International Institute of Refrigeration 
in its recommendations for the freezing of foodstuffs 
[15]. Freezing is considered complete when the centre 
temperature reaches -lo”C, and the freezing time is 
the time from the introduction of the material to the 
freezing environment where it is frozen from two sides, 
until the centre reaches - 10°C. This definition is con- 
sequent on the release of latent heat over a range of 
temperature and the absence of a sharp phase change 
front. 

EXPERIMENTAL 

A plate freezer was used for all the work to ensure 
one dimensional heat transfer. Blocks of Karlsruhe 
test substance of different size were made, each sur- 
rounded by at least 0.08m of foam insulation except 
on the two opposite faces from which it is frozen. The 
blocks were held in constant temperature rooms prior 
to freezing, and 10 copper/constantan thermocouples 
were embedded in various places in each block and 
connected to a 12 point recording potentiometer 
operating on a 30s cycle. To vary the surface heat- 
transfer coefficient sheets of cardboard, waxed on both 
sides were placed between the plates and slab. Varying 
the number ofsheets of cardboard altered the resistance 
to heat transfer from the surface of the slab, thus 
changing the surface heat-transfer coefficient. 

;=t+No($)+No(&). (8) 

The plates were lowered by an hydraulic ram to ensure 
good thermal contact. A 29% calcium chloride brine 
was circulated through the plates at approximately 
1 kg/s. This was pumped from a jacketed tank, the 
temperature of which was controlled to +OS”C. The 
maximum temperature rise in the circulated brine 
under these conditions was 0.3”C. 

Blocks of minced lean beef (74% water) and mashed 
potato (82% water) were also used to check applicability 
to real food materials. Surface heat-transfer coefficients 
were measured by methods given elsewhere [ 141. 

RESULTS AND DISCUSSION 

(A) Thermal property data 
A total of 43 freezing experiments were conducted 

with Karlsruhe test substance under varying conditions 
of ambient temperature T,, initial temperature Ti,,, 
surface heat-transfer coefficient h, and slab half thick- 
ness D. T, was varied from - 20°C to - 4O”C, Ti,, from 
3 to 35”C, h from 13 to 450 W/m’ “C, and D from 0.012 
to 0.050m. Thermal conductivity data was obtained 
from Comini [16]. 

Two sets of enthalpy/temperature data are available 
for Karlsruhe test substance. In Fig. 1 Curve A is due 
to Riedel [17] and corresponds to the case where 

1 
AXY 

I I I I I 
-15 -10 5 0 5 

Temperature, ‘C 

FIG. 1. Enthalpy/temperature data for Karlsruhe test sub- 
stance plotted as specific heat (J/m3 “C) vs temperature (“C). 
Curve A is from Riedel [ 171 and Curve B from Comini [ 161. 
Curve C is an approximation to Curve A for use iri finite 

difference calculations. 

initially a true type of plateau is found in the freezing 
curve of a sample of Karlsruhe test substance, and 
Curve B from Comini’s data [16] does not give this 
plateau although the overall enthalpy change is the 
same. The difference could be due to different methyl- 
cellulose types as well as experimental error. The methyl 
cellulose used by the present authors was found to be 
better represented by Curve A. Because of difficulties 
in incorporating this curve into a finite difference 
program Curve C, a close approximation was used. 
No appreciable changes in density were found and like 
Comini [ 161 a constant value was used. 

(B) Fourth kind of boundary condition 
The experimentally determined surface temperature 

was used in each case with boundary conditions of the 
fourth kind. To obtain sufficient accuracy nine nodal 
points in the half slab were used with the time step 
At chosen so that there were approximately 1500 time 
steps for each experiment. Each calculation was 
stopped at the experimentally determined time for the 
centre of the slab to reach - 10°C. Agreement between 
the computed and experimental surface temperatures 
is in all cases within + 1°C up until the time the centre 
reached - 3.O”C. Beyond this, and until the calculation 
was stopped, the agreement was better than +2”C in 
all except four cases where larger differences up to 
3.5”C were found. 

The probable cause of the larger errors is “jumping” 
of the latent heat peak. Where changes in temperature 
with respect to time and displacement are large, it is 
difficult to conserve changes in enthalpy due to 
“jumping” of the latent heat peak, and to stable 
oscillations that may develop in the difference scheme. 
Two ways of overcoming this problem have been 
suggested by Comini [16]. When updating the differ- 
ences scheme the following can be used instead of 
7;.“-‘CTm 

~m-1+(~m-1+~m+Tim+‘)/3 (9) 
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and heat capacities can be found from enthalpy differ- 
ences as follows: 

Ci = [H(~+t)-H(~-,)]/(7;+:-7,-,) (10) 
where 

7;:,; = (7;+,+TJ/2; q-i = (T+7;-r)/2. (11) 

These may not be completely satisfactory in conserving 
enthalpy changes and errors could occur in some cases. 
Reducing At and Ax is one way of reducing errors, 
but to avoid jumping completely when using Curve C, 
the necessary reduction is uneconomic in computation 
time. Hence an alternative approach was necessary. 

A heat balance was used to find where jumping had 
occurred. In these cases Curve B, a much flatter shaped 
curve, was found to give much smaller errors in the 
heat balance. Comini er al. [lo] showed that errors 
introduced by changes in the shape of the latent heat 
peak are small (up to 3x), and the present authors 
found them to be considerably smaller than the errors 
in the heat balance (up to 1204). Thus in these cases 
Curve B was considered to give more accurate results. 

(C) Third kind of boundary condition 
Bonacina et al. [ll] suggest representing the third 

kind of boundary condition in the Lees scheme by 
using k?!, = hAx and T?, = T,. This scheme was used 
with eight Ax‘s in the half slab and led to the error 
frequency diagram shown as Curve A in Figure II when 
compared with the experimental freezing times. Details 
of the experimental conditions and experimental freez- 
ing tunes are given elsewhere [is]. The average error 
was + 7.334. 

The finite difference boundary condition is derived 
from a heat balance over the surface space increment 
which extends in OSAx from the surface. This is shown 
in Fig. 3. 

?(T,-To)= h(Tn-Q+C(To)$? Wf 

Difference, % 
FIG. 2. Error frequency diagram for set of 43 freezing 
experiments with Karlsruhe test substance. Calculated freez- 
ing times are compared to experimentally determined values 
and differences expressed as a percentage. (A) difference 
scheme as suggested by Bona&a et al. [ll]. (B) authors’ 

modification. 

T_,=T, TO T, l-2 

FIG. 3. Diagrammatic representation of the finite difference 
scheme at the surface of the half slab. 

In reality the surface nodal point has the heat capacity 
of only 0.5Ax’s associated with it. This means that the 
boundary equation is such that too much heat is re- 
moved from the slab by a factor of (n+));‘n. When 
n = 8 as in our case, the finite difference scheme will 
necessitate the removal of 6.7% too much heat in the 
overall balance to arrive at any new temperature 
distribution. 

An obvious way to reduce the errors is to increase n, 
the number of space increments. The error is 1!2n and 
halves each time n is doubled, but each time this is 
done thecomputation time also doubles. Table 1 shows 
the effect of increasing n. As can be seen the increase in 
computation time makes this an uneconomic approach. 

Table 1. Calculated freezing times for 
D = 0.0125m; h = 51.9 W/m’“C; T, = -4O.O’C: 

T,n = 3O.o”C with varying numbers of space 
increments. (Experimental freezing 

time = 2300+ 150s.) Calculated freezing times 
tpre, and computation time rcatc, are 

both in seconds 

100 -.-. C’” 

n 1 prr f talc 2n 

8 2550 38 6.7 
15 2490 70 3.3 
30 2460 136 1.7 

To avoid this problem a useful approach is to define 
the space increment as follows : 

Ax’ = D/(n++ (13) 

and then to calculate the freezing time of a slab of half 
thickness ndx’. This slab is )Ax’ smaller, but the finite 
difference scheme will now remove the correct total 
amount of enthalpy for the original slab. The centre 
tem~rat~e/t~e profile is valid but the calculated 
surface temperature is not because of the difference in 
position of the nodal temperature T$. In many cases 
the difference in surface temperature calculated for slab 
half thicknesses of nAx and nAx’ is less than 0.5”C, with 
the surface temperature of the smaller slab always 
higher. ‘This latter profile agreed within 2 1°C of the 
experimental surface temperature initially but towards 
the end ofsome runs the calculated surface temperature 
was up to 3°C higher than the experimental one. 
Extrapolation of the calculated temperature profiles to 
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a point OSAx’ beyond Tf in some cases gave a better 
estimate of the actual surface temperature, but as this 
was not always the case no advantages could be seen 
in this procedure. While the calculated surface tempera- 
tures tracked the experimental ones, the calculated 
centre temperature followed the measured centre tem- 
perature within f 1°C. Once the calculated surface 
temperature started to deviate from the experimental 
results so did the calculated centre temperature within 
the same levels of tolerance as the surface temperature. 

The modified approach led to Curve B on Fig. 2. 
The average percentage error is + 0.7% and the stand- 
ard deviation 4.7%. The error in the mean could arise 
from two possible causes. One possibility is errors in 
thermal properties, an error which would be consistent 
over all runs. The other is a changing surface heat- 
transfer coefficient. The slab is held between plates 
with sheets of cardboard inserted between the plates 
and the slab to give thermal resistance. When the slab 
freezes there is slight expansion, and the slab is pressed 
more tightly against the plates. This could lead to 
decreasing thermal contact resistances, and hence to 
an increasing overall surface heat-transfer coefficient. 
Thus the final experimental surface temperature would 
be lower than the calculated one (as was found), and 
the freezing process would take less time than predicted. 
A 1% error in freezing time corresponds to a change 
in contact resistance of about 10% which is quite 
feasible. Either of these reasons or both could explain 
the offset mean, but it was not possible to differentiate. 

(D) Errors in thefinite difference scheme 
The deviation around the mean is due to a number 

of factors. Firstly there is experimental error which was 
,:pproximately f 4% for each freezing experiment. This 
includes fOS”C error in temperature measurement 
and control, 0.3mm error in slab thickness and an 
estimated 2% error in surface heat-transfer coefficient. 
This does not explain the variations that were found 
of k 12%. Other possible sources of error are (a) round- 
ing errors (b) truncation errors in the finite difference 
scheme (c) truncation errors in the boundary equation 
(d) errors due to piece-wise approximation of con- 
tin&us functions k(T) and C(T) which must be 
assumed constant over time At and distance Ax. 

(a) Rounding errors on amodern computer are small 
and can be neglected. 

(b) Truncation errors in the difference scheme are 

-yk(T)$ 

-!!gC(T)$. (15) 

The truncation error in the space term should be 
small despite a threefold increase in k(T). If the time 
step is halved twice as many are needed per calculation 
so that the sum of the truncation errors with respect 
to time is still proportional to AC. Also C(T) increases 
by a factor of more than 50 in the phase change 
region, and errors will be largest here. This will affect 

the rate at which any calculated temperature moves 
off the freezing plateau, and is the more likely source 
of error. 

(c) The third kind of boundary condition, equation 
(4) is represented by equation (12) which contains a 
difference approximation with the following truncation 
error: 

-yk+,(T)$ (16) 

aT/dx is greatest near the surface and other derivatives 
will also be large in this region so that these truncation 
errors may add significantly to the others. 

(d) It is assumed that Cr represents C(T) over the 
range Cr-+ to Cy++ which is only true if it changes 
linearly. It is assumed that k(T) can be represented by 

W+,)==k[O’i+T+.,V21 
k(T,-+)==k[(T++-1)/2]. 

(17) 

(18) 

These add further small errors. Although each error 
in itself is small it is repeated (n+ 1) times for each 
time step, and for a large number of time steps. This 
could lead to errors of the order indicated above, but 
these are difficult to estimate. 

The overall error range (+ 12%) minus the experi- 
mental error (+4”/,) indicates the error of the finite 
difference scheme. This is approximately $8% and 
appears to represent a practical limit to the accuracy 
of finite difference calculations with the third kind of 
boundary condition for predicting food freezing times. 
Decreasing At and Ax improves accuracy but at the 
expense of large amounts of computation time. The 
smaller errors associated with the fourth kind of 
boundary condition are due to there being no extra 
truncation errors from the boundary equation. Tem- 
peratures within the slab follow the surface temperature 
so that if the surface temperature is incorrectly calcu- 
lated all other calculated temperatures will also be 
wrong. Use of the fourth kind of boundary condition 
avoids errors in the surface temperature, and hence 
decreases errors in the calculated centre temperature, 
whereas when the third kind of boundary condition is 
applied errors in the surface temperature are un- 
corrected, and hence are reflected in all other calculated 
temperatures. 

(E) Application to~ootlst@ 
When the scheme was applied to the freezing of 

mashed potato and minced lean beef the range of 
errors over 12 freezing experiments was -7.7 t0 
+ 11.0% with a mean of +1.8X and a standard 
deviation of 5.4%. This slightly higher standard devi- 
ation could be due to heterogeneity in food materials 
and errors in thermal property approximations. 

CONCLUSION 

Finite difference calculations on freezing systems 
have been applied using the third kind of boundary 
condition: these are less accurate, but more related to 
practice than calculations where the fourth kind of 
boundary condition is applied. However, the accuracy 
should be adequate for many applications. 
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LA CONDITION A LA LIMITE DE TROISIEME ESPECE DANS 
LES CALCULS NUMERIQUE DU GEL 

RBsum&La congelation des aliments est frequemment d&rite a partir des conditions de troisieme esp&e 
qui sont difficiles a traiter et qui sont sujettes a des erreurs, principalement a cause de la necessite de 
calculer implicitement les temperatures de surface. Des etudes experimentales de congelation sur modble 
et sur des systemes biologiques reels ont et& simul~s par des methodes aux differences finies avec un 
schema a trois niveaux de temps et des conditions de troisi&me espitce, pour le transfett thermique a une 
seule dimension. Pour des temps de congelation allant depuis le debut du refroidissement jusqu’a ce que 
le centre atteigne - lO”C, l’expbience et le calcul s’accordent a + 14% prb avec une confiance B 99%, 

en in&ant I’erreur expkrimentale estimee a *4x. 

NUMERISCHE BERECHNUNG DES GEFRIERENS MIT DER RANDBEDINGUNG 3. ART 

Zusammenfassung-Beim Gefrieren von Lebensmitteln trifft man hiiufig die Randbedingung 3. Art an; 
da hierbei die Oberfllchentemperaturen implizit errechnet werden miissen, ist dieses Problem schwierig 
zu behandeln und gibt zu Fehlern AnlaB. Es wurde das Gefrieren von Modellsubstanzen und biologischem 
Material experimenteli untersucht. Die numerische Berechnung fur eindimensionalen Warmestrom 
und fiir die Randbedingung 3. Art erfolgte mit Hilfe eines Differenzenverfahrens. Die Versuchswerte und 
die Rechenwerte ftir die Gefrierzeiten von Beginn der Abkiihlung bis zu einer Kerntemperatur von - 10°C 
stimmten zu 99% mit Abweichungen von f 14% iiberein, wobei der MeBfehler zu +4% angesetzt wurde. 

I-PAHHIYHOE YCJIOBllE TPETbEFO POAA I-IPH gWCJIEHHblX METOAAX 
MCCJIEAOBAHH~ l-IPOqECCA 3AMOPATkiBAHFiII 

AHIlOTalplSI - 3aKaKII II0 3aMOpaXCIIBaHHIO IIHIIWBbIX IIlJOJI9yKTOB YaCTO BIUIIOSUOT IpaIiH’IHble 

YCJIOBHa TfETbeIO fJOjla, f3aCCMOTfJCHHe KOTOpbIX IIfSIICTaBKKCT HCKOTOpble TfJYKHOCTH II MOIKCT 

IIpIIBOAHTb IC IIOQWIIIIOCTSIM IJIaBHbIM 06pa30~ B CFIJIY TOTO, ‘IT0 TCMIIe~Typy IIOIWpXHOCTH 

IIpIIXOJIHTCSI PaCC’IHTbIBaTb B HCIIaHOM BII@Z. OIIblTbI II0 3aMOfJ~HaaHHIO MOJWIbHbIX II fJWJ’IbHbIX 

6BonorsiSeCKHx CIICTeM MOJEJIHpOBanHCb C IIOMOIIWO KOHWIHO-pa3HOCTHblX MCTOAOB C HCIIOJIb- 

30BaHHCM TflCXCJIOftHOfi CXCMbI H TpaHWIHbIX YCJIOBHtt TpeTbCTO POAa JIJIII OAHOMCfIHO~O IIpOIICCCa 

Termoneperroca. Anrr oTpe3rra spehferin OT Hawna np01w~a 0xKawIeHm ~0 MobfeHTa, Korea 

TehmepaTypa uerirpa o6pasrra AocTsiraeT -lO”C, 3KcIIepHMeHTanbHbIe H pacveTHbre namibre COB- 

rIaJIII C TO‘IHOCTbfO i 14 % IIpH AOCTOBapHOCTH 99 % H IIOI-peUIHOCTII 3KCIICpHMCHTa f 4 %. 


